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Abstract

Magnetic tomography is an important emerging technique for the nondestructive investi-
gation and monitoring of electrical devices. Measurements of the magnetic field of the currents
in a device are used to reconstruct the current distribution. Here we investigate the uniqueness
problem for current reconstructions from multi-layer devices. The general magnetic tomogra-
phy problem is well-known to be highly non-unique and unstable. Here, as a new result for the
single- and multi-layer device case we will obtain full uniqueness for the current reconstruc-
tions. We will base our uniqueness proof on the uniqueness of wave source splitting combined
with tools from potential theory and explicit estimates for particular surface integrals involving
the Biot-Savart integral operator.

1 Introduction

Fuel cells are chemical devices which transform chemical energy into electrical energy. The basic
principle for a PEM (proton exchange membrane) fuel cell is shown in Figure 1. At the anode (-)
hydrogen is inserted. Air or oxygen, respectively, is fueled at the cathode (+). They are separated
by a semi-permeable membrane for protons coated with some catalysor (for example platinum).
Protons move to the cathode through the membrane. This creates a potential which then drives
electrones through an external wire and power some motor or light. Hydrogen and oxygen react at
the cathode to form water and heat. A survey on reaction principles, fuel cell types and application
in the portable, mobile and stationary segment can be found in [3].

Usually, the current density distribution in a fuel cell is not homogeneous over the whole active
area of the cell. The supply of reactands, the contact pressure or the structure of the flowfields
have great influence on the homogeneity of the current density distribution, so both for reasearch
and development and for maintenance the knowledge of the current density distribution is of
importance. In recent years several methods have been developed to monitor the current density
distribution in fuel cells or similar layered devices. [17] provides a comparison of three in-situ
methods for the determination of this distribution, in particular the partial MEA approach, the
analysis of the currents via isolated so-called subcells and current distribution mapping via some
passive resistor network integrated into the MEA. [18] presents a segmented cell method, where
the voltage drop over each segment is not measured via resistors but via hall sensors. All these
methods need to assemble the measurement devices into the cell. In [7] an invasive segmented
cell method is combined with the noninvasive neutron radiographic imaging to study the effects of
local water content on the local performance of the cell.
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Figure 1: We show the principle of a PEM fuel cell. Hydrogen and oxygen are fueled into different
layers. They react, creating a potential which drives electric currents through the wires.

Magnetic tomography is an important emerging technique where current distributions are in-
vestigated via measurements of magnetic fields. Magnetic tomography is a nondestructive and
noninvasive technique, i.e. we do not need to build measurement technology into devices. This is
of high importance, since the assembly of measurement technology into devices significantly alters
the physical device. This leads to modified setups and is not practical for industrial production,
quality control and monitoring of active systems. For a detailed description of the method we refer
to [9] and [13]. In [14] the resolution of the reconstructed current density depending on the relative
error is discussed. But magnetic tomography is not only limited to the fuel cell application: it is
also used in biomedical imaging (see [16], [10]) to detect sources of electric currents in the human
body, for example in the brain or in the muscels.

Magnetic tomography in its general setup is known to be highly non-unique, compare [12],
[8]. There is a large variety of current distributions j in some domain Ω which generate the same
magnetic field H in the open exterior Ωe = R3 \Ω of Ω. However, for special situations we obtain
uniqueness for current reconstructions. For example, when the current is flowing in a wire grid,
the unique reconstructability is shown in [8].

The Biot-Savart law is a classical tool, but still of interest in current research (see e.g. [4],
[10]). Let j ∈ (L2(Ω))3 be a current density and W the Biot-Savart operator (compare [13]), which
maps the current density onto its magnetic field H, see also (3). By application of Green’s theorem
Hauer, Kühn and Potthast [8] show that the nullspace N(W ) of W is given by

N(W ) =
{

curl v : v ∈ H1
0 (Ω), div v = 0

}
, (1)

which can also be seen as a consequence of the de Rham theory (see for example [1]). Thus, taking
any compactly supported function v ∈ H1(Ω) with div v = 0 we obtain an element w := curl v
which is in the nullspace N(W ) of W . Moreover, the authors in [8] show that the orthogonal space
N(W )⊥ is given by

N(W )⊥ :=
{
j ∈ Hdiv=0(Ω) : 〈j, j0〉L2(Ω) = 0∀j0 ∈ N(W )

}
=

{
j ∈ Hdiv=0(Ω) : ∃q ∈ L2(Ω) s.th. grad q = curl j

}
. (2)

In particular, harmonic vectorfields (defined by curl j = 0,div j = 0) are a subset of N(W )⊥. Via
curl curl = −4 + grad div we obtain that the components of functions in N(W )⊥ solve 4j = 0
in a weak sense. Thus, in general the set of reconstructable densities is strongly limited.
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Figure 2: The figure shows the setting of a single-layer device (left) and a multi-layer device with
three layers (right). The single-layer device consists of two finite plates where the current is inserted
into one plate and distributes itself flowing in the plate. It can flow through the layer only in the
perpendicular direction. When reaching the second plate it is collected within the plate into some
point where it leaves the device. The layer is the space between the two plates, where the current
can flow only in the direction perpendicular to the plates. The three-layer device consists of four
plates and three layers between the plates.

Here we will investigate the special situation of a single- and multi-layer device. This setting
is typical for magnetic tomography for fuel cells and it refers to a setup shown in Figure 2. For
the single-layer case one layer is surrounded by two finite plates. Currents flow into one plate,
then through the layer and are collected via the second plate. A multi-layer device consists of a
collection of such coupled single-layer devices. Since the conductivity in the plates is much higher
than in the layer, we assume that the currents through the layer only flow perpendicular to the
end plates, which will be the key ingredient to the model studied here. This is a reasonable first
step simplification, because if grid structured flow field are used (see Figure 3), the geometry limits
forces the currents to flow nearly perpendicular to the membrane electrode assembly.

Figure 3: Grid structured flow field (left), detail view (right)

Under this condition we will prove uniqueness for the current reconstruction from magnetic field
measurements. In particular, we investigate a measurement setting, where either the full magnetic



Uniqueness of Current Reconstructions for Magnetic Tomography in Multi-Layer Devices 4

field or its normal component is measured on a surface surrounding the device or on different
surface patches in the open exterior of the set Ω. In this case as shown in [13] the measurements
uniquely determine the magnetic field in the exterior Ωe of the device Ω.

The main ingredients of our proofs are analyticity arguments, results from potential theory such
as uniqueness of exterior boundary value problems and an analysis of the particular local behaviour
of magnetic fields of currents in surfaces. The local behaviour of the magnetic field through surfaces
is analysed by explicit estimates of the Biot-Savart operator in neighbourhoods of such surfaces.
In principle, we expect the arguments to be relevant also to a variety of settings such as special
geometries in biomedical imaging, not only for the fuel cell application.

We start in Section 2 with a detailed description of the setup of magnetic tomography in the
general case and the single-layer device. Then, in Section 3 we develop a source splitting procedure
which identifies magnetic fields arising from different regions in space when their superposition is
measured. This is an important step towards our uniqueness proof and of interest by itself. In
Section 4 we study the reconstruction of a current density in a single plane from its magnetic field.
Further, we prepare results from potential theory. Finally, Section 5 collects all preparations and
shows uniqueness of current reconstructions for single-layer and multi-layer devices.

2 The Setup of Magnetic Tomography

The goal of this part is the description of the setup of magnetic tomography for single- and multi-
layer devices. In general, magnetic tomography is concerned with the reconstruction of a current
density j defined in some bounded set Ω ⊂ R3. Magnetic fields H of currents j are calculated via
the Biot-Savart integral operator, defined by

(Wj)(x) :=
1

4π

∫
Ω

j(y)× (x− y)
|x− y|3

dy, x ∈ R3 (3)

for j ∈ L2(Ω). For details about this representation and its relation to the Maxwell equations we
refer to [13].

First, we will study the following single-layer device. We define the geometry of two end plates
of the device by

Γ1 =
{

(y1, y2, y3) ∈ R3 : a1 ≤ y1 ≤ b1, a2 ≤ y2 ≤ b2, y3 = c1
}

Γ2 =
{

(y1, y2, y3) ∈ R3 : a1 ≤ y1 ≤ b1, a2 ≤ y2 ≤ b2, y3 = c2
}
. (4)

The layer betwen the end plates is given by

Λ =
{

(y1, y2, y3) ∈ R3 : a1 ≤ y1 ≤ b1, a2 ≤ y2 ≤ b2, c1 < y3 < c2
}

(5)

and we define Ω := Γ1 ∪ Γ2 ∪ Λ. In the plates Γ1,Γ2 we assume the current j to flow only in
y1-y2-direction, i.e.

j(y) =

 j1(y)
j2(y)

0

 , y ∈ Γ1 ∪ Γ2. (6)

In the layer Λ we assume that the current j is flowing only in y3-direction, i.e.

j(y) =

 0
0

j3(y)

 , y ∈ Λ. (7)
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We like to indicate, that the currents in Γ1 and Γ2 are surface currents while the currents in Λ
are volume currents. For our devices the currents are divergence free, i.e. we have

div j(y) = 0, y ∈ Ω (8)

and j fulfills the continuity condition

ν · j|Λ = Div j|Γ1∪Γ2 (9)

with the surface divergence Div .
This leads to the conclusion that for y ∈ Λ we have

j(y) = j(ỹ) if y1 = ỹ1 and y2 = ỹ2, (10)

i.e. the current j in Λ does depend only on the y1, y2 components and is constant along lines
parallel to the y3-axis.

Definition 2.1 A single-layer device is determined by its geometry as defined by (4) - (5) with
divergent-free current flow restricted by (6) - (7).

Analogously, we define a multi layer device. Roughly speaking, a multi layer device consists of
n single layer devices placed one after the other. In the magnetic tomography application for fuel
cells this multi-layer device corresponds to a fuel cell stack with n single cells connected in series.

Definition 2.2 A multi-layer device consists of n+ 1 plates

Γk =
{

(y1, y2, y3) ∈ R3 : a1 ≤ y1 ≤ b1, a2 ≤ y2 ≤ b2, y3 = ck
}

(11)

for k = 1, . . . n+ 1 with c1 < c2 < . . . < cn+1 and n layers

Λ` =
{

(y1, y2, y3) ∈ R3 : a1 ≤ y1 ≤ b1, a2 ≤ y2 ≤ b2, c` < y3 < c`+1

}
(12)

for ` = 1, . . . n. For the multi-layer device we define

Ω :=
n+1⋃
k=1

Γk ∪
n⋃
`=1

Λ`. (13)

As in (4) and (5) we assume the currents to flow only in y1 − y2-direction in the plates Γk and to
flow only in y3-direction in Λ`. The currents are divergence free, so we have

div j(y) = 0, y ∈ Ω, (14)

which leads to
j(y) = j(ỹ) if y1 = ỹ1 and y2 = ỹ2 (15)

for y, ỹ ∈ Λ`.

Finally, we assume throughout this work that we are given measurements of the magnetic field
H on some set M ⊂ Ωe in the exterior of the device Ω which fully determine the magnetic field in
Ωe. This can be the normal values ν ×H on a closed surface ∂G where G ⊃ Ω or the values of H
on an arbitrary open set. For details about different possibilities we refer the reader to [13].
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3 Source Splitting for Magnetic Fields

One of our main tools will be splitting for magnetic fields according to their region of support.
Splitting of fields has been recently used in acoustic scattering by Liu and Potthast [2] in the
framework of acoustic inverse scattering problems. We will see that the main ideas also apply to
magnetic tomography and are an important component for the uniqueness proof below. However,
the results of this section are of interest in a more general framework since they provide an analytical
tool to split magnetic fields arising from different regions in space.

Definition 3.1 We say that a magnetic field H defined in R3 is supported in a domain G ⊂ R3,
if there is a current distribution j ∈ L2(G)3 such that

H = Wj (16)

with the Biot-Savart operator W given by (3). The field H is supported on a surface Γ, if j(x) ≡ 0
for x 6∈ Γ and (16) is satisfied, where now the volume integral is replaced by a surface integral

H(x) = curl
∫

Γ

Φ(x, y)j(y) ds(y), x ∈ R3. (17)

For the preparation of the following result we summarize a couple of well-known facts. Consider
the representation (3), rewritten as

H(x) = (Wj)(x) = curl
∫

Ω

Φ(x, y)j(y) dy. (18)

First, from div curl = 0 we observe div H = 0 in Ωe. Next, via curl curl = −4 + grad div and
the Maxwell equation curl H = j = 0 on Ωe = R3 \ Ω we obtain

4H = 4H − grad div H = −curl curl H = 0 in Ωe, (19)

i.e., all components of a magnetic field H supported in Ω solve the Laplace equation in Ωe.

Theorem 3.2 (Uniqueness of Field Splitting) Consider two domains G1, G2 with

G1 ∩G2 = ∅ (20)

and a magnetic field H supported on G = G1 ∪ G2. Then the magnetic field H can be uniquely
split into the sum of two fields H(1) and H(2), respectively, which correspond to a magnetic field
supported in G1 and a field supported in G2. Moreover, the uniqueness holds for every component
Hj, j = 1, 2, 3 of a magnetic field, i.e. if Hj is supported on G1 ∪G2, then it is uniquely split into
the sum of components supported on G1 and G2, respectively.

Proof. Existence is clear since we assume that H is supported in G1 ∪ G2 and, thus, can be
represented as

H(x) = curl
∫
G1

Φ(x, y)j(y) dy + curl
∫
G2

Φ(x, y)j(y) dy,

= H(1)(x) +H(2)(x), x ∈ R3. (21)
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The key question is uniqueness of the splitting. Assume that there are two representations

H = H(1) +H(2) = H̃(1) + H̃(2).

We take the difference of the two representations and define Ĥ(j) := H(j) − H̃(j) for j = 1, 2. The
sum Ĥ := Ĥ(1) + Ĥ(2) is zero in R3 \ G. To guarantee sufficient smoothness up to the boundary
we choose domains G̃j , j = 1, 2 with boundary of class C2 such that G̃j contains Gj in its interior
and such that

G̃1 ∩ G̃2 = ∅. (22)

According to (19) the field Ĥ(1) is a solution to the Laplace equation in a neighbourhood of G̃2.
On ∂G̃2 it has the boundary values

Ĥ(1)|∂G̃2
= −Ĥ(2)|∂G̃2

,
∂Ĥ(1)

∂ν
|∂G̃2

= −∂Ĥ
(2)

∂ν
|∂G̃2

. (23)

We now define a vector field V by

V (x) :=

{
Ĥ(1)(x) x ∈ G̃2

−Ĥ(2)(x) x ∈ R3 \ G̃2.
(24)

Then the vector field V satisfies the Laplace equation in G̃2 and R3 \ G̃2. The field V is continuous
on ∂G̃2 and has continuous normal derivatives. Therefore it establishes an entire vectorial solution
to the Laplace equation with the decay

|V (x)| ≤ C

r2
, r = |x|

for |x| sufficiently large. From the maximum principle applied to each of its components we now
obtain V ≡ 0. This yields H(j) = H̃(j) for j = 1, 2 and the proof of the general splitting result
is complete. Since in (23), (24) we have argued component wise with the Laplace equation, the
uniqueness result applies to each component separately and we obtain the second statement of the
theorem. �

We will employ the splitting to identify the magnetic fields coming from different plates of
a single- or multi-layer device, where for simplicity of presentation here we consider the generic
single-layer case. Denote the magnetic field which is generated via the Biot-Savart law (3) by the
currents j in Γj by H(j) for j = 1, 2 and the field generated by the currents j in Λ by H(3). Then
we have

H(x) = H(1)(x) +H(2)(x) +H(3)(x), x ∈ R3, (25)

arising from the standard decomposition of the integration domain of (3) into

Ω = Γ1 ∪ Γ2 ∪ Λ.

However, this decomposition is not adequate to obtain uniqueness results, since the domains of
support do not have a positive distance. However, for the third component of the field we calculate

H(3)(x) =
1

4π

∫
Λ

j(y)× (x− y)
|x− y|3

dy
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=
1

4π

∫
Λ

 0
0

j3(y)

× x− y
|x− y|3

dy, x ∈ Ωe

=
1

4π

∫
Λ

j3(y)
|x− y|3

 −(x2 − y2)
(x1 − y1)

0

 dy, x ∈ Ωe (26)

Thus, we obtain

H3(x) = H
(1)
3 (x) +H

(2)
3 (x), x ∈ R3 \ (Γ1 ∪ Γ2) . (27)

This means that the third componentH3 of the magnetic fieldH of a single-layer device is generated
only by the currents in the end plates Γ1 and Γ2.

Now, we apply the splitting Theorem 3.2 to the third component H3 of the magnetic field as
given by (27) to obtain the following Corollary.

Corollary 3.3 From the knowledge of the third component H3(x) for x ∈ Ωe we can uniquely
identify the the third components H(1)

3 (x) and H
(2)
3 (x) supported on the end plates Γ1 and Γ2 of

the single-layer device.

4 Uniqueness of the Reconstruction of Currents in Surfaces
and Further Preparations

The goal of this section is to show uniqueness for the current reconstruction when the field arises
from a current density supported in a planar surface. Further, we prepare results from potential
theory for later use and provide some particular uniqueness properties arising from our geometrical
setup. We start with the generic situation of reconstructing a current flowing in a full straight
two-dimensional plane Γ in R3 from the full knowledge of its magnetic field in R3 \ Γ.

Theorem 4.1 Consider the magnetic field H of a piecewise continuous current density j flowing
through a plane Γ in R3 and a point z0 ∈ Γ where j is continuous. Then we have the behaviour

lim
x→z0

H(x)× ν =
1
2
j(z0), (28)

where ν denotes the normal vector for Γ.

Proof. First we mention, that this behaviour of the magnetic field corresponds to the jump
relation for vector potentials (see Thm. 6.11 in [5]). For the sake of self-containedness we
present the proof for this special case. We choose a coordinate system such that z0 = 0 and
Γ = {(x1, x2, 0) : x1, x2 ∈ R}. Further, we rotate the x1 − x2-plane such that j(0) = e2|j(z0)|, i.e
the current density in the origin points into the x2-direction. As a first step consider a constant
current j0. Then, we calculate H(x) in the point xh := (0, 0, h) with h > 0. In this case the
magnetic field has components only in the x1 and x3 direction given by

H(x) =
1

4π

∫
Γ

x− y
|x− y|3

×

 0
j0,y
0

 ds(y)
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=
1

4π

∫
Γ

1
|x− y|3

·

 −(x3 − y3)j0,y
0

(x1 − y1)j0,y

 ds(y). (29)

We first study the H1 component, which is given by

H1(xh) = −hj0,y
4π

∫ ∞
−∞

∫ ∞
−∞

1√
h2 + y2

1 + y2
2

3 dy1dy2. (30)

We switch over to polar coordinates, i.e. we substitute x = r sin θ, y = r cos θ and calculate

H1(xh) = −hj0,y
4π

∫ ∞
0

∫ 2π

0

r√
h2 + r2 sin2 θ + r2 cos2 θ

3 dθdr

= −hj0,y
2

∫ ∞
0

r
√
h2 + r2

3 dr = −j0,y
2
. (31)

From symmetry arguments we further obtain H3(xh) = 0. From

H × ν =
1
2

 −j0,y0
0

×
 0

0
1

 =
1
2

 0
j0,y
0

 (32)

we now derive (28) for a constant current density j.
As second step we consider a bounded current density j which is continuous at z0 and employ

the same coordinate system as chosen above. We use (31) for the H1 component with j0,y := jy(0)
to calculate

H1(xh) = − h

4π

∫ ∞
−∞

∫ ∞
−∞

jy(y1, y2)√
h2 + y2

1 + y2
2

3 dy1dy2 (33)

= − h

4π

∫ ∞
−∞

∫ ∞
−∞

jy(y1, y2)− j0,y√
h2 + y2

1 + y2
2

3 dy1dy2 −
h

4π

∫ ∞
−∞

∫ ∞
−∞

j0,y√
h2 + y2

1 + y2
2

3 dy1dy2(34)

= − h

4π

∫ ∞
−∞

∫ ∞
−∞

jy(y1, y2)− j0,y√
h2 + y2

1 + y2
2

3 dy1dy2 −
j0,y
2
. (35)

We denote the integral in (35) by Q(h). Then, with polar coordinates we split the integration into
a small ball with radius R > 0 and the rest to obtain

Q(h) = − h

4π

∫ R

0

∫ 2π

0

jy(r sin θ, r cos θ)− j0,y
√
h2 + r2

3 r dθdr (36)

− h

4π

∫ ∞
R

∫ 2π

0

jy(r sin θ, r cos θ)− j0,y
√
h2 + r2

3 r dθdr

and estimate with universal constants C1 and C2 depending on j and R but not on h:

|Q(h)| ≤ C1‖jy − j0,y‖∞,BR(0)

∣∣∣∣∣
∫ R

0

hr
√
h2 + r2

3 dr

∣∣∣∣∣︸ ︷︷ ︸
=:τ(R)

+
C2h√
h2 +R2

. (37)
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Since jy is continuous and bounded, for given ε > 0 we choose R > 0, so that τ(R) < ε/2. Then
we choose h0 > 0 so that C2

h0√
h2
0+R2

< ε/2. Thus |Q(h)| < ε for all h < h0. Since the choice of ε

was arbitrary we have the convergence Q(h)→ 0 for h→ 0 and thus

lim
h→0

H1(xh) = −j0,y
2
. (38)

With analogous argumentation we can derive that Hj(xh) → 0 for h → 0 for j = 2 and j = 3.
Now, the statement (28) for an arbitrary current density j which is continuous in z0 is obtained
from (32). �

Further preparations are carried out by the following result for solutions to the Laplace equation
in unbounded domains. We refer the reader to [11] or [15] to further details about exterior Neu-
mann problems for the Laplace equations, where the boundaries are usually arising from bounded
domains. Our goal here is to use the result that the normal component of H on a plane Γ uniquely
determines H, which follows from well-known arguments via the reflection principle. For complete-
ness and the convenience of readers from a broader audience here we present a concise version of
the proof.

Theorem 4.2 (Uniqueness of exterior Neumann problem) Consider a half-space U ⊂ R3

and the normal vector ν pointing into the interior of U . Let ϕ ∈ C2(U) ∩ C1(U) be a solution to
the Laplace equation

4ϕ = 0 in U (39)

with the Neumann boundary condition

ν · grad ϕ = 0 on ∂U (40)

and the decay condition
|ϕ(y)| = o(1), r = |y| → ∞ (41)

uniformly in all directions. Then ϕ is equal to zero in U .

Proof. Without loss of generality we can assume that U = R2 × R+, i.e. U is the half-space
with positive y3-component. We employ the reflection principle, i.e. we extend the field ϕ into R3

by
ϕ(y) := ϕ(y′), y ∈ R2 × R−, (42)

where y′ = (y1, y2,−y3) for any point y ∈ R3. This reflected function along ∂U is continuous in
R3. It clearly satisfies the Laplace equation in U and in R3 \ U . We calculate

∂ϕ

∂y3
(y) = − ∂ϕ

∂y3
(y′), y ∈ R3. (43)

Thus, due to the homogeneous boundary condition (40) the potential ϕ has a continuous normal
derivative on ∂U . From this we conclude that ϕ is a solution to the Laplace equation in the full
space R3. Details of the argument can be carried out via Green’s representation theorem applied
to ϕ in a ball B. In each of the subdomains B1 := B ∩ U and B2 := B ∩ (R3 \ U) the field ϕ
satisfies the Laplace equation and we can thus represent ϕ by

ϕ(x) =
∫
∂B1

{
∂ϕ

∂ν
(y)Φ(x, y)− ϕ(y)

∂Φ(x, y)
∂ν(y)

}
ds(y)

+
∫
∂B2

{
∂ϕ

∂ν
(y)Φ(x, y)− ϕ(y)

∂Φ(x, y)
∂ν(y)

}
ds(y) (44)
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where ν here denotes the normal vector to ∂B1 or ∂B2 directed into the exterior of these bounded
domains. For the integrals in (44) on the joint boundary S = B ∩ ∂U we now observe that the
the first term in both integrals vanishes and the second term has the same modulus but a different
sign due to the different direction of the normals. Thus, we obtain

ϕ(x) =
∫
∂B

{
∂ϕ

∂ν
(y)Φ(x, y)− ϕ(y)

∂Φ(x, y)
∂ν(y)

}
ds(y), x ∈ B, (45)

i.e. the potential ϕ is smooth in B and satisfies the Laplace equation. We now have an entire
solution to the Laplace equation which satisfies the decay condition (41). From the maximum
principle applied to ϕ in a large ball BR(0) with radius R we obtain

|ϕ(x)| ≤ o(1), x ∈ BR(0). (46)

Taking the limit R→∞ we obtain ϕ ≡ 0 and the proof is complete �

Theorem 4.3 (Uniqueness for boundary value problem) Let H be some magnetic field gen-
erated by a current distribution j in a bounded set Ω and let U be a half-space containing Ω in its
open exterior. We denote the normal vector to the boundary ∂U of U by ν. Then, the knowledge
of ν ·H on ∂U uniquely determines H in the exterior Ωe of Ω.

Proof. First, we note that H satisfies the Maxwell equations and we have curl H = 0 in the
exterior Ωe of Ω. Since Ωe is simply connected, there is a magnetic potential ϕH with

H = grad ϕH in Ωe. (47)

It is unique up to a constant, which we will determine below. Using div grad = 4 from div (µH) =
0 we obtain the Laplace equation

4ϕH = 0 in Ωe (48)

for ϕH . From ν ·H = g for some function g we obtain

g = ν ·H = ν · grad ϕH =
∂ϕH
∂ν

, (49)

i.e. we have a Neumann boundary condition on ∂U . Further, since H is generated by a current
distribution in Ω it is represented by the Bio-Savart law (3) and we obtain the decay

|H(x)| ≤ C

|r|2
, |x| = r →∞. (50)

It is sufficient to estimate the decay of ϕ outside a ball BR(0) with Ω ⊂ BR(0). We now choose
the constant for the magnetic potential such that ϕH is zero at (∞, 0, 0). Then, we can calculate
ϕH at xa = (−a, 0, 0) by

ϕ(xa) = −
∫ a

∞
H1(y)dy (51)

such that
|ϕ(xa)| ≤ |

∫ ∞
a

c

r2
dr| ≤ c

a
. (52)
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To obtain the potential in other points x ∈ R3 \ BR(0) with R = |x| we first integrate from
(−∞, 0, 0) to (−R, 0, 0), then integrate along a circle of radius R around the origin which connects
(−R, 0, 0) and x. We estimate

|ϕ(x)| ≤ c

R
+ |
∫ α

0

τ(y) ·H(y)dτ(y)|

≤ c

R
+
αR

R2
≤ c+ 2π

R
(53)

with some constant c. This proves the decay estimate

|ϕ(x)| ≤ c

r
, r = |x| → ∞ (54)

uniformly for all directions with some constant c. Finally, we now collect all parts to obtain
uniqueness for the magnetic boundary value problem. Assume that there are two magnetic fields
H, H̃ which have the same boundary values

ν ·H = ν · H̃ on ∂U. (55)

Then the field Ĥ := H−H̃ satisfies a homogeneous condition on ∂U and obeys all other conditions
of the fields which were exploited above. Then the magnetic potential for Ĥ solves the Neumann
boundary value problem with homogeneous boundary values, thus the potential vanishes in U and
this yields H = H̃ in U . By analyticity of these fields in R3 \ Ω they coincide in R3 \ Ω and the
proof is complete. �

Lemma 4.4 Consider a single-layer device as in Definition 2.1. Then the currents in Γ1 uniquely
determine the currents in Λ.

Proof. Without loss of generality we assume that c1 = 0 and we recall the directional constraints
(6) and (7). To employ a divergence in R3 we use distributions to write the volume current density
j in a neighbourhood of the layer Γ1 as

j1(y) = δ(y3)j̃1(y1, y2) (56)
j2(y) = δ(y3)j̃2(y1, y2) (57)

where j̃ here is the surface current density in Γ1. For y ∈ Λ we have

div j(y) =
∂

∂y3
j3(y) = 0, (58)

so j3 does only depend on y1 and y2 and we can rewrite j3 as

j3(y) = Θ(y3)j̃3(y1, y2) (59)

with the Heaviside step function Θ and a function j̃3(y1, y2) that only depends on y1 and y2. From
(59) we derive

∂

∂y3
j3(y) = δ(y3)j̃3(y1, y2) (60)

with the Dirac delta funtion and consequently div j = 0 yields

δ(y3)j̃3(y1, y2) = − ∂

∂y1
j1(y)− ∂

∂y2
j2(y) = −δ(y3)

∂

∂y1
j̃1(y)− δ(y3)

∂

∂y2
j̃2(y). (61)
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Integration over y3 now yields

j̃3(y1, y2) = − ∂

∂y1
j̃1(y)− ∂

∂y2
j̃2(y) (62)

and the proof is complete. �

5 Uniqueness Results for Current Reconstruction

In this last section we collect all preparations to derive our main results. We have split the
presentation into two steps, where first we present a simple version of the arguments for a single-
layer device and then work out the general multi-layer case.

Theorem 5.1 (Uniqueness for Single-Layer Device) Consider a measurement setup accord-
ing to Section 2 which uniquely determines the field H in the exterior of

Ω = Γ1 ∪ Γ2 ∪ Λ.

Then, for a single-layer device the currents j(y), y ∈ Ω, are uniquely determined by the measure-
ments of H.

Proof. We decompose the magnetic field H according to (25) supported in Γ1, Γ2 and Λ
respectively. Our measurements of the magnetic field H by assumption determine H in Ωe. In
particular, we can choose a plane Γ ⊂ Ωe perpendicular to the x3-axis on which H and thus also
ν ·H = H3 is determined from our measurements.

As a first step by the use of Corollary 3.3 we uniquely identify the third components H(j)
3 which

are supported on the end plates Γj for j = 1, 2. Next, we apply Theorem 4.3 to the field H(1) and
H(2) separately, stating that the third components of the fields on Γ determine the full fields. As
a result, the two fields H(1) and H(2) which are supported on Γ1 or Γ2, respectively, are uniquely
determined.

Now, we consider the surface patch Γ1 imbedded into an infinite plane Γ in R3 and apply
Theorem 4.1 to reconstruct the currents j|Γ1 from H(1). Analogously, we reconstruct the current
j|Γ2 from H(2), i.e. the current densities in the two end plates are determined uniquely from the
data.

Finally, with the knowledge of the currents in the end plates Γ1 and Γ2 the currents in Λ are
determined by Lemma 4.4. �

Finally, we extend our results to the multi-layer device. Consider a multi-layer device as in
Definition 2.2 with n layers. Then we can decompose the magnetic field according to the region of
support similar as in (25). Here, our notation first labels the different plates in x1 − x2-direction
and then counts the areas between these plates.

Denote the magnetic field which is generated via the Biot-Savart law by the currents j in Γk by
H(k) for k = 1, . . . , n+1 and the field generated by the currents j in Λ` by H(n+1+`) for ` = 1, . . . n.
Then, we have

H(x) =
n+1∑
k=1

H(k)(x) +
n∑
`=1

H(n+1+`)(x), x ∈ R3 (63)

H3(x) =
n+1∑
k=1

H
(k)
3 (x), x ∈ R3. (64)
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This means, the third component H3 of the magnetic field H of a multi-layer device is generated
only by the currents in the plates Γi, i = 1, . . . n+ 1.

Theorem 5.2 (Uniqueness for Multi-Layer Device) Consider a measurement setup accord-
ing to Section 2 which uniquely determines the field H in the exterior of Ω given by (13). Then,
for a multi-layer device the currents j(y), y ∈ Ω, are uniquely determined by the measurements of
the magnetic field H.

Proof. We need to carefully check which arguments from the single-layer case can be carried
over to the multi-layer setting. According to (63) we decompose the magnetic field H into

H(x) =
2n+1∑
ξ=1

H(ξ)(x), x ∈ R3 (65)

supported in Γk and Λ` for k = 1, ..., n+ 1 and ` = 1, ..., n respectively. Our measurements of the
magnetic fieldH by assumption determineH in Ωe. Again, we choose a plane Γ ⊂ Ωe perpendicular
to the x3-axis on which H and thus also ν ·H = H3 is determined from our measurements.

As a first step by the use of a generalization of Corollary 3.3 we uniquely identify the third
components H(k)

3 which are supported on the end plates Γk for k = 1, ..., n + 1. To this end we
remark that the arguments of source splitting as worked out in Theorem 3.2 directly generalize to
multiple domains as follows. Consider a splitting into n domains G1, .., Gn. Then we first apply
Theorem 3.2 to G1 and G := G2∪ ...∪Gn to obtain H3 = H

(1)
3 +H(2)

3 . We then apply the theorem
to the field H(2)

3 and split it further. After n steps we obtain a splitting of H3 into n+ 1 uniquely
determined components which are supported on Γk, k = 1, .., n+ 1.

After this step, we apply Theorem 4.3 to the field H(k) for each k = 1, ..., n+ 1 separately. We
obtain that the third components of the fields on Γk determine the full fields. As a result, the
fields H(k) which are supported on Γk are uniquely determined for all layers k = 1, ..., n+ 1 of the
multi-layer device.

Now, for each k = 1, ..., n+ 1 we consider the surface patch Γk imbedded into an infinite plane
Γ in R3 and apply Theorem 4.1 to reconstruct the currents j|Γk

from H(k). As a consequence the
current densities in each plate Γk is determined uniquely from the data.

Finally, with the knowledge of the currents in the plates Γk the currents in Λ` for ` = 1, ..., n
are determined by Lemma 4.4. This completes the proof for the general case. �
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