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Abstract
Magnetic tomography investigates the reconstruction of currents from their
magnetic fields. Here, we will study a number of projection methods in
combination with the Tikhonov regularization for stabilization for the solution
of the Biot–Savart integral equation Wj = H with the Biot–Savart integral
operator W : (L2(�))3 → (L2(∂G))3 where � ⊂ G. In particular, we
study the role of a priori knowledge when incorporated into the choice of
the projection spaces Xn ⊂ (L2(�))3, n ∈ N, for example the conditions
div j = 0 or the use of the full boundary value problem div σgrad ϕE = 0 in �,
ν ·σgrad ϕE = g on ∂� with some known function g, where j = σgrad ϕE and
σ is an anisotropic matrix-valued conductivity. We will discuss and compare
these schemes investigating the ill-posedness of each algorithm in terms of the
behaviour of the singular values of the corresponding operators both when
a priori knowledge is incorporated and when the geometrical setting is
modified. Finally, we will numerically evaluate the stability constants in the
practical setup of magnetic tomography for fuel cells and, thus, calculate usable
error bounds for this important application area.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetic tomography is concerned with the reconstruction of currents from their magnetic
fields. Current reconstructions are of importance for several practical applications. In medicine
the magnetic fields around the brain reflect the neural activity in different areas of the animal
or human being. The location of source distributions is important for planning surgery and as
a general means of diagnosis. Industrial applications use magnetic fields in such diverse areas
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Figure 1. We show the principle of a fuel cell. Hydrogen and oxygen are fuelled into different
layers. They react, creating a potential which drives electric currents through the wires.

as steel production and fuel cells. For the fuel cell application the reconstruction of current
densities is needed for the development, monitoring and testing of the chemical and physical
processes in fuel cells.

Here, our goal is to (a) formulate algorithms for current reconstruction which incorporate
different conditions arising from a priori knowledge about the unknown current density and
(b) to investigate the ill-posedness of different algorithms for magnetic tomography in the
setting which is employed in the fuel cell application area. First, we describe the background
and geometrical setup of the reconstruction problem.

Fuel cells are chemical devices which transform chemical energy into electrical energy.
The basic principle for a hydrogen–oxygen fuel cell is shown in figure 1. At the anode
(−) hydrogen is inserted. Air or oxygen, respectively, is fuelled at the cathode (+). They
are separated by a semi-permeable membrane for protons coated with some catalyzer (for
example, platinum). Protons move to the cathode through the membrane. This creates a
potential which then drives electrons through an external wire and power some motor or light.
Hydrogen and oxygen react at the cathode to water and heat. Usually fuel cells need some
heating and cooling technology.

Magnetic tomography in biomedical applications has a long history. We refer the reader
to the survey articles [4, 16, 2] with extensive literature. Basic mathematical results can be
found in the books of Kaipio–Somersalo [8] and Kirsch [9]. To our knowledge, the study
of the ill-posedness of the magnetic tomography problem with respect to the use of a priori
knowledge has not yet been carried out.

In contrast to the medical applications, the currents in fuel cells do not have internal
sources. This leads to an underlying partial differential equations without source terms on the
right-hand side. It strongly influences the uniqueness results (usually in the medical setting
the location and polarization of sources is reconstructed) and to some extent the reconstruction
techniques (in medical applications often a finite number of parameters is determined searching
for source locations).

The basic setting of magnetic tomography for fuel cells has been investigated in a series
of papers on numerical simulations with the Tikhonov regularization for reconstruction [12],
on the underlying anisotropic forward problem via the finite integration technique [13], on
the uniqueness question for current reconstructions in single cell devices [7] and in full stacks
[5] and on the full applied measurement method including the design of a machine for such
measurements [6]. In [14] the resolution of the reconstructed current density depending on the
relative error in the magnetic field measurements is discussed. Sampling and probe methods
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Figure 2. We show a fuel cell (left) and fuel cell stack (right) in the laboratory. The magnetic
tomograph is seen in the left image with two magnetic sensors. By courtesy of TomoScience GbR,
Wolfsburg/Research Center, Jülich, Germany.

for magnetic tomography have been investigated in [11, 15]. More general introductions into
solution techniques for inverse problems can be found in [3, 1].

Next, we describe the underlying model from which parts will be incorporated into our
reconstruction algorithms later. Consider a geometrical setting as shown in figure 2. We will
model the active area of the fuel cell as a simple cube, where current is injected into the cube
at some point on the bottom and is flowing out at another point on the back side. This means
we know the total current in the cell and, in particular, we know the inflowing and outflowing
current on the boundary of the domain �. This leads to the boundary condition

ν · j (y) = g, y ∈ ∂� (1)

with some given function g on ∂�. In this work we will restrict our attention to the static
situation, where the currents j do not depend on time. The behaviour of time-independent
currents, electric and magnetic fields is governed by the stationary Maxwell equations

∇ × H = j, ∇ × E = 0 (2)

∇ · D = ρ, ∇ · B = 0 (3)

complemented by the material equations

D = εε0E, B = µµ0H (4)

and Ohm’s law

j = σE. (5)

Here, E is the electric field, D the electric flux density, H the magnetic field stength, B the
magnetic flux density, j the current density, ρ the electric charge density, σ the conductivity
distribution, ε the electric permittivity and µ the magnetic permeability of the medium under
consideration, ε0 and µ0 are the well-known natural constants for the vacuum. For the fuel cell
application equations (5) and (6) are a macroscopic model with some effective conductivity
σ which summarizes the influence of chemical processes, fluid dynamics of oxygen and
hydrogen and the shape of the flow field into some mesoscopic variable.

The above equations are usually transformed into an elliptic boundary value problem, [13],
for which then unique solvability is shown. Assume that � is simply connected. Because of
∇ × E = 0 there is an electric potential ϕE such that E = ∇ϕE , i.e. for the current density j
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we have the equation j = σ∇ϕE . We use the identity ∇ · ∇ × A = 0, which is valid for any
arbitrary sufficiently smooth vectorfield A, to derive the equation

∇ · j = ∇ · ∇ × H = 0 (6)

from the Maxwell equations (2), i.e. the current distribution is divergence free. This will be
one of the conditions included into the inversion later. Now, we obtain the equation

∇ · σ∇ϕE = 0 in � (7)

for the electric potential ϕE . Additionally, we have the boundary condition

ν · j = ν · σ∇ϕE = g (8)

mentioned above. We further require the additional normalization condition∫
�

ϕE dy = 0 (9)

to establish uniqueness for this particular Neumann problem, compare [13].
Let us now assume that we know the current distribution j in the domain � ⊂ R

3.
Magnetic fields H of currents j are calculated via the Biot–Savart integral operator, defined
by

(Wj)(x) := 1

4π

∫
�

j (y) × (x − y)

|x − y|3 dy, x ∈ R
3 (10)

for a current density distribution j ∈ L2(�)3. The task of magnetic tomography in its general
form reduces to solving the equation

Wj = Hmeas on ∂G, (11)

where G is some domain with sufficiently smooth boundary such that � ⊂ G and Hmeas

denotes some measured magnetic field on ∂G. As discussed in [12], in principle it is sufficient
to know the normal component of H on the measurement surface ∂G. However, we will
work with the full field H, i.e. with redundant data which is used in the practical applications
(compare figure 2) to obtain a better control of measurement error.

The nullspace of the Biot–Savart integral operator was studied in detail in [5], where a
characterization of N(W) and its orthogonal space N(W)⊥ has been derived. In particular,
we have

N(W) = {
curl v : v ∈ H 1

0 (�)3, div v = 0
}

(12)

with H 1
0 (�) := {v ∈ H 1(�)3 : v|∂� = 0}. Additionally, the orthogonal complement of

N(W) with respect to the L2 scalar product on � is given by

N(W)⊥ = {j ∈ Hdiv =0(�)3 : ∃q ∈ L2(�)3 s. th. curl j = grad q} (13)

with Hdiv =0 := {v ∈ L2(�) : div v = 0}. Further, it has been shown that for a homogeneous
conductivity distribution σ the solution of (6)–(9) is in N(W)⊥ and, thus, in this case we
obtain full reconstructability.

Our key goal here is to investigate appropriate conditions on the current density
distributions j to reduce the ill-posedness of the inversion and to improve the reconstructions
achieved in [12] by plain Tikhonov regularization. In particular, we study these three
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algorithms:

(A) the plain Tikhonov regularization;
(B) the use of condition (6) to supplement equation (11);
(C) the incorporation of the full boundary value problem (7)–(9) into equation (11).

We will show how the ill-posedness of the inversion is reduced via the conditions (B) and
(C). In particular, (a) we derive qualitative estimates of the singular values of the operators
under consideration and (b) we provide numerical results about the quantitative improvements
which can be gained. These are compared with the improvements which can be achieved by
changing central inversion parameters such as the distance of the measurement points to the
area � of the current density j .

We will introduce the discretized form of the Biot–Savart integral operator via a finite
integration technique in section 2, which serves as our toolbox for the subsequent sections. In
section 3 we discuss the methods (B) and (C). Section 4 serves to analyse and compare the
stability for the algorithms under consideration by estimates for their singular values. Finally,
in section 5 we compare reconstruction results and we provide a numerical evaluation of
the stability constants for real settings which is typically used for state-of-the-art devices of
magnetic tomography.

2. Continuous and discrete realization of the Biot–Savart operator

The goal of this section is to summarize the finite integration technique applied to magnetic
tomography. The convergence of the technique towards the solution of the continuous problem
(1)–(5) has been analysed by Kühn et al [13]. Since the discretization is directly integrated into
our inverse algorithms in the subsequent parts we provide basic notation here and summarize
the results. We will investigate the situation where

� :=
{
y ∈ R

3,
−a1

2
< y1 <

a1

2
,
−a2

2
< y2 <

a2

2
,
−a3

2
< y3 <

a3

2

}
(14)

with some parameters a1, a2, a3 > 0. We employ a discretization with levels n1, n2, n3 in
the direction of the x1, x2 or x3-axis, respectively. In figure 3 (first row, left) we show an
example for a 3 × 4 × 2 discretization. This type of grid has a physical realization, for which
the algorithms of magnetic tomography can be tested directly on real data. It corresponds
to a resistor network of the same dimension, compare figure 3 (first row, right) showing
some physical realisation of a 5 × 5 × 4 resistor network with a conductivity σ1 in the x–y-
direction and σ2 � σ1 in the z-direction which models the conditions in a fuel cell, where
the conductivity through the membrane (z-direction) is lower than in the bipolar plates (x–y-
plane). The numbering of knots and wires is shown in figure 3 (first row, left and middle).
The inflow and outflow knots of the current are located centred on the bottom, in the example
in figure 3 at the knots 2 and 14, respectively.

As known in standard circuit theory, a current flow in a resistor network can be calculated
via mesh and knot rules, also known as Kirchhoff’s circuit laws. Here, we used the adjacency
matrix T = (Tkl), k = 1, . . . , K, l = 1, . . . , N , where Tkl is 1 if wire l starts at knot k,− 1 if
wire l ends in knot k and 0 otherwise and the hand side b = (b1, . . . , bK)T defined by

bk =
⎧⎨
⎩

I, if k is the injection knot of the current
−I, if k is the outflow knot of the current
0, otherwise

(15)
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Figure 3. This is the discretization grid as it models the fuel cell in software and its physical
realization as a resistor network. First row: the images on the left-hand side show the numbering
of knots and wires; the image on the right-hand side shows the resistor network. Second row: the
image on the left-hand side shows Kirchhoff’s knot rule with the inflowing and outflowing currents
for one knot; the image on the right-hand side illustrates one mesh.

with the total current I. For the discrete model we assume that the resistance of wire l is given
by Rl . The current Jl flowing through wire l, the resistance Rl of wire l and the voltage Ul

between the two endpoints of wire l are connected via Ohm’s law

Ul = Rl · Jl. (16)

The knot rules are then given by
N∑

l=1

TklJl = bk, k = 1, . . . , K. (17)

The construction of the mesh rules has been realized as follows. For every knot k we take an
outgoing wire in the positive direction of an arbitrary axis that ends at knot k̃. Starting from k̃

we take a wire in the positive direction of an axis that is different to that chosen before. Then
the mesh is closed by choosing exactly two additional wires. By iterating this procedure over
all knots we get the linear system

N∑
l=1

Sml(RlJl) = 0, m = 1, . . . , M, (18)

where Sml is 1 if wire l is part of mesh m and the wire is passed through in the positive direction
and −1 if it is passed through in the negative direction, respectively. Otherwise Sml is 0.

This procedure results in 3n1n2n3 − n1n2 − n1n3 − n2n3 + 1 equations for the
3n1n2n3 − n1n2 − n1n3 − n2n3 currents, with one redundant equation due to the solenoidality
of the electric potential. Here, we drop the last equation to obtain a uniquely solvable system.

Having calculated the currents we are able to calculate the magnetic field at a point x ∈ R
3

via the discrete Biot–Savart operator for this wire grid. This reduces to calculate

(WJ)(x) = − 1

4π

∑
wires l

∫
l

J̃ l × (x − p)

|x − p|3 ds(p), (19)

6



Inverse Problems 24 (2008) 045008 K-H Hauer et al

with J̃ l := (Jl, 0, 0)T , if wire l is parallel to the x-axis, J̃ l := (0, Jl, 0)T , if wire l is parallel to
the y-axis or J̃ l := (0, 0, Jl)

T , if wire l is parallel to the z-axis. Here, we have used an exact
integration of the magnetic field for a straight wire as explicitly given by equation (4.9) in [5].

The convergence theorem for the finite integration technique towards the solution of the
continuous problem (1)–(5) has been shown in [13], where the discretized problem is extended
into the three-dimensional space via interpolation.

Theorem 2.1. Let σ be a coercitive matrix. Then the equation system arising from mesh and
knot rules has a unique solution for each discretization (n1, n2, n3). For nj → ∞, j = 1, 2, 3
it converges towards the true solution of the boundary problem.

3. Algorithms for magnetic tomography

The Biot–Savart operator W is a linear and bounded operator from (L2(�))3 to (L2(∂G))3.
Since it has an analytic kernel it is well known from standard functional analysis that it is a
compact operator [10, theorem 2.21] with exponentially decaying singular values. It cannot
be continuously invertible [10, theorem 2.20]. This leads to highly unstable reconstructions
where small perturbations on the right-hand side of (11) cause strong perturbations in the
solution and is one of the main limitations of magnetic tomography.

Discretizing the Biot–Savart operator as described in the previous section we get the
3n × N matrix W, where n is the number of measurement points on the measurement surface
∂G and N is the number of wires in the cube. We usually assume 3n 	 N , i.e. we work with
overdetermined systems. Then, the discretized form of (11) is given by

WJ = Hmeas. (20)

It has been shown in [5] that W is injective. However, this finite-dimensional system is strongly
ill-conditioned where the condition number increases exponentially when the approximation
level is increased. The basic principle of regularization methods for injective operators is
to approximate the unbounded operator W−1 by a bounded operator Rα with regularization
parameter α > 0 which shows pointwise convergence RαH → j := W−1f, α → 0,

for H = Wj . If W is not injective, we cannot expect RαH → j , but we usually have
RαH → Pj, α → 0, with some projection operator P. For continuous Tikhonov regularization
the projection P is the orthogonal projection onto N(W)⊥. For the discrete case, classical
Tikhonov regularization [17] employs

Rα := (αI + W∗W)−1W∗ (21)

with regularization parameter α > 0, where W∗ denotes the complex conjugate transpose
matrix of W. For the choice of the regularization parameter we refer to standard results in
[3]. Plain Tikhonov regularization has been applied to magnetic tomography problem in [12]
which proves in principle the feasibility of current reconstructions for the inverse problem (11),
but also demonstrates its severe ill-posedness. We denote the classical algorithm (21) by A.
In the following subsections we combine projection algorithms where further knowledge is
incorporated into the inversion procedure with Tikhonov-type regularization schemes.

3.1. Divergence free Tikhonov regularization

We recall that the current distribution j is divergence free and it is natural to incorporate
condition (6) into the inversion. We expect this condition to decrease the solution space to
provide a more accurate solution and will provide qualitative estimates and quantitative results
in the following sections.
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For the discrete realization of the inversion we use the condition introduced in
equation (17) for choosing the finite subset Xn of the solution space (L2(�))3. This condition
corresponds to Kirchhoff’s knot rule, so we set up the matrix T as described in section 2. Since
the discrete solution J solves

TJ = b, (22)

with a particular solution j0 the general solution of this equation is given by

jgen = j0 + Nz, (23)

with a basis N of the nullspace of T and arbitrary z. Inserting this representation into
equation (20) we derive

(WN)z = Hmeas − Wj0 (24)

which can be solved via Tikhonov regularization by setting

Rα := (αI + (WN)∗(WN))−1(WN)∗, α > 0. (25)

Now a solution J of (20) can be obtained by setting

J := j0 + NRα(Hmeas − Wj0). (26)

A concise formulation of this algorithm is given by the following pseudo code.

Algorithm B. Divergence free Tikhonov regularization

function DIVERGENCEFREETIKHONOV (α, b, Hmeas)

calculate W via finite integration

calculate T from (17)

calculate particular solution j0 of TJ = b

caluclate orthonormal basis N of N(T)

Rα ← (αI + (WN)∗(WN))−1(WN)∗

J ← j0 + NRα(Hmeas − Wj0)

return J

end function

Numerical results for the algorithm are shown in section 5. We estimate the singular
values of WN in section 4.

3.2. A projection method with special basis functions

In this section we will take into account the information that our currents solve the
boundary value problem (6)–(9). This leads to a projection method with a special basis
{j (k) : k = 1, . . . , N}. Here, we construct this basis such that its z-components approximately
build a Haar basis, i.e. they are approximately a multiple of one in some section and close to
zero in all others.

As background we remind the reader that for the fuel cell application the conductivity in
x–y layers are usually large and uniform due to metallic end plates and carbon layers between
the different single fuel cells. Thus, we use a uniform high conductivity σ0 in all wires in the
x–y direction. We have varying conductivity only in the wires in the z-direction, which we
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label from k = 1 to k = N . Now, we choose numbers σl, l = 0, 1, 2 with

σ2 � σ1 � σ0. (27)

Then, the idea is to use the ansatz

j =
N∑

k=1

ξkjk, (28)

where jk is a current distribution with a conductivity which is set to σ1 in wire k in
the z-direction and to σ2 in all other wires in the z-direction. We use the notation
XN := span{jk : k = 1, . . . , N}. The current distributions jk, k = 1, . . . , N are solutions
to the forward problem, i.e. they are calculated via knot and mesh rules as described in
section 2. The magnetic field of an element j ∈ XN at a point x ∈ R

3 can be calculated via

(Wj)(x) =
N∑

k=1

ξk(Wjk)(x). (29)

Defining Hk := Wjk by evaluating the Biot–Savart operator, we set up the matrix
Hs := (H1, . . . , HN). Then, we solve the ill-posed linear system

Hsξ = Hmeas (30)

for the coefficients ξ := (ξ1, . . . , ξN)T , where we employ Tikhonov regularization for
regularization of this system. The solution J of the original problem is obtained by calculating

J :=
N∑

k=1

ξkjk. (31)

In view of section 4, theorem 4.4, we note that in general jk are not an orthonormal
basis of the discrete space XN . However, we can orthonormalize jk to obtain a basis{
jk,o : k = 1, . . . , N

}
of XN and define Hs,o := (Wj1,o, . . . , WjN,o). Then all estimates

below apply. However, for simplicity we have usually directly applied the special basis method
via Hs with satisfying results. We conclude this section with the pseudo code presentation of
the special basis projection method.

Algorithm C. Special basis projection

function SPECIALBASISPROJECTION (α, Hmeas)

calculate W via finite integration

for k = 1, . . . , N do

calculate current distribution jk as described in (27)

Hk ← Wjk

end for

Hs := (H1, . . . , HN)

Rα ← (αI + H∗
s Hs)

−1H∗
s

ξ ← RαHmeas

J ←
N∑

k=1

ξkjk

return J

end function
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Numerical results for the algorithm are shown in section 5 and we estimate the singular
values of the orthonormalized version Hs,o of Hs in section 4.

4. Algorithmic stability analysis in dependence on a priori knowledge

In this section we study the stability of the above algorithms via their singular values and
derive estimates for the singular values of the methods.

Usually, for estimating the ill-posedness of inverse problems the size of the singular values
is taken as central measure. For discrete inverse problems the condition number is the key
quantity. Here, we are mostly interested in the singular values as becomes clear from the
following reasons. Consider an equation

Ax = b (32)

which we solve with some data error e(δ), i.e. we calculate x(δ) by

A(x(δ)) = b + e(δ). (33)

In general one estimates the error by

‖x − x(δ)‖ � ‖A−1‖ · ‖e(δ)‖ (34)

and calculates the relative error

‖x − x(δ)‖
‖x‖ � ‖A−1‖ · ‖A‖ · ‖e(δ)‖

‖b‖ . (35)

Thus, the condition number provides an upper bound for the relative numerical error. Now,
we consider two matrices A1, A2 with A1x = b and A2x = b, where the singular values of
A2 are larger than the singular values of A1, thus the norm

∥∥A−1
2

∥∥ is smaller than the norm∥∥A−1
1

∥∥. Still, the condition of A2 might be larger than the condition of A1, which is partly the
case for our setting of magnetic tomography. If we solve the same problem with given data
we need to consider the case where we keep e(δ) fixed. Then, we solve the systems

A1x
(δ)
1 = b + e(δ), A2x

(δ)
2 = b + e(δ). (36)

Estimating the reconstruction error ‖x − x(δ)‖ as in (34) we have∥∥A−1
2

∥∥ · ‖e(δ)‖ �
∥∥A−1

1

∥∥ · ‖e(δ)‖, (37)

i.e. we have a better estimate for the data error from the second system with A2 than for the
system with A1. Here, the true solution x is fixed. In this case from (37) we get a better
estimate for the relative error via the second system∥∥x − x

(δ)
2

∥∥
‖x‖ �

∥∥A−1
2

∥∥ · ‖b‖
‖x‖

‖e(δ)‖
‖b‖ , (38)

compared to the estimate for the first system∥∥x − x
(δ)
1

∥∥
‖x‖ �

∥∥A−1
1

∥∥ · ‖b‖
‖x‖

‖e(δ)‖
‖b‖ . (39)

If the error is a multiple of the eigenvector with smallest singular value of A1, then estimate
(39) will be sharp and the improvement in the error is fully given by the improvement in
estimate (37) of the norm of the inverse via the singular values. Estimate (38) fully carries
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over to (24): one calculates

(WN)z = Hmeas − Wj0 ⇒ (WN)(z − z(δ)) = e(δ)

⇒ x − x(δ) = N(z − z(δ)) = N(WN)−1e(δ). (40)

Since N has orthonormal columns we obtain (38) also for a setting of form (24).
For general estimates of the singular values we will use the Courant minimum–maximum

principle as a key tool. First, we order the eigenvalues of a self-adjoint matrix operator
A : C

n → C
n according to their size and multiplicity λ1 � λ2 � · · · � λn. Then, the Courant

minimum–maximum principle states that

λn+1−k = min
dim U=k

max
x∈U

(Ax, x)

(x, x)
, k = 1, . . . , n. (41)

We use this to prove some useful properties. Roughly speaking, the aim of this section is
to show that incorporating some a priori knowledge leads to larger singular values of the
corresponding Tikhonov matrix. We set up a general framework in terms of subspaces and
apply this to our setting of magnetic tomography.

Definition 4.1 [a priori knowledge via subspace setting]. We denote X = C
n and Y = C

m and
we consider an operator W : X → Y . For a subspace V ⊂ X = C

n we define WV : V → Y

by WV = W |V and W ∗
V to be its adjoint operator Y → V determined by

(Wx, y)Y = (x,W ∗
V y)V , x ∈ V, y ∈ Y. (42)

It is well known that

N(W ∗
V ) = W(V )⊥. (43)

Clearly, the operator AV := W ∗
V W is a self-adjoint operator on V , since for x, z ∈ V we have

(z,W ∗
V Wx)V = (WV z,Wx)Y = (W ∗

V WV z, x)V . (44)

First, we collect some properties of the adjoint operators arising from the subspaces
Ṽ ⊂ V ⊂ X.

Lemma 4.2. Let Ṽ ⊂ V ⊂ X be subspaces and consider the adjoint operators W ∗
V of

WV : V → Y and W ∗
Ṽ

of WṼ : Ṽ → Y arising from the restriction of W to V or Ṽ ,
respectively. Further, let P : V → Ṽ denote the orthogonal projection operator from V onto
Ṽ ⊂ V . Then we obtain

W ∗
Ṽ

= PW ∗
V . (45)

Proof. We denote Q := I − P and decompose x = Qx + Px for x ∈ V . For x ∈ Ṽ , y ∈ Y

we obtain Qx = 0 and in this case we calculate

(x, PW ∗
V y)

P=I−Q= (x,W ∗
V y − QW ∗

V y)
Qx=0= (Px,W ∗

V y − QW ∗
V y)

P (V )⊥Q(V )= (x,W ∗
V y) = (WV x, y)

x∈Ṽ ⊂V= (WṼ x, y) = (x,W ∗
Ṽ
y). (46)

This yields (x, (PW ∗
V − W ∗

Ṽ
)y) = 0 for all x ∈ Ṽ , from which (45) follows. �

We now prove a monotonicity property for singular values which directly applies to the
setting of magnetic tomography.

11
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Theorem 4.3. Let V, Ṽ ⊂ C
n be subspaces of C

n with Ṽ ⊂ V and denote the singular values
of WV or WṼ , respectively, by µj or µ̃j , j = 1, 2, 3, . . . . We denote the dimensions of V, Ṽ

by n, ñ and note that ñ � n by Ṽ ⊂ V . Then we obtain the estimates

µn+1−j � µ̃ñ+1−j , j = 1, 2, 3, . . . , ñ. (47)

Moreover, in this estimate we will obtain equality for k ∈ N if and only if the eigenspace Ek

of W ∗
V WV with eigenvalue λn+1−k is a subset of Ṽ .

Proof. We employ the Courant minimum–maximum principle applied to the eigenvalues λk

of W ∗
V WV and the eigenvalues λ̃k of W ∗

Ṽ
WṼ to derive

λn+1−k = min
U⊂V,dim U=k

(
max
x∈U

(W ∗
V WV x, x)

(x, x)

)

= min
U⊂V,dim U=k

(
max
x∈U

(WV x,WV x)

(x, x)

)

� min
U⊂Ṽ ,dim U=k

(
max
x∈U

(WV x,WV x)

(x, x)

)

= min
U⊂Ṽ ,dim U=k

(
max
x∈U

(WṼ x,WṼ x)

(x, x)

)

= min
U⊂Ṽ ,dim U=k

(
max
x∈U

(W ∗
Ṽ
WṼ x, x)

(x, x)

)

= λ̃ñ+1−k (48)

for k = 1, 2, . . . , ñ. In this estimate we will obtain equality for k ∈ N if and only if
all subspaces U with a dimension dim(U) = k of the eigenspace Ek corresponding to
the eigenvalue λn+1−k (which are spaces U where the Courant minimax principle attains
its minimum) are subsets of Ṽ . This is equivalent to the eigenspace Ek being a subset
of Ṽ . �

We apply the result to our algorithms for magnetic tomography as follows.

Theorem 4.4. Consider the three solution methods (A), (B) and (C) from section 1:

(A) the plain Biot–Savart equation given by (20);
(B) the divergence free Biot–Savart equation as in (24);
(C) the special basis Biot–Savart equation (30).

Here, for (30) we assume that the basis currents j1, . . . , jN build an orthonormal set in
the space of all currents. Then for the singular values µ

(A)
k , µ

(B)
k and µ

(C)
k of the matrices

W(A) := W, W(B) := WN and W(C) := Hs,o we obtain the estimates

µ
(A)
nA+1−k � µ

(B)
nB +1−k � µ

(C)
nC+1−k (49)

for k = 1, 2, . . . , nC .

Proof. The generic case is provided by matrices W and N with orthonormal columns. In this
case we can interpret the mapping z �→ Nz as a restriction of the mapping W to the image
space V := {v1, . . . , vm} where vj are the columns of N. Let U ⊂ C

m be a subset. Then

min
U⊂C

m,dim U=k

(
max
z∈U

(WNz, WNz)

)
= min

Ũ⊂V,dim Ũ=k

(
max
x∈Ũ

(WNx, WNx)

)
(50)

12
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Figure 4. Real cell components (endplate, flowfield and membrane electrode assembly (MEA)),
dimension of the cell components.

with V := N(Cm), because N maps the set of subspaces of C
m bijectively onto the set of

subspaces of V . From this follows that WN and W|V have the same singular values.
The mapping z �→ Nz is norm preserving. Now, an application of theorem 4.3 proves an

estimate of form (49).
For the comparision of (B) and (C) we remark that the matrix arising from Wjk can be

written as WJ with the orthonormal matrix J = (j1, . . . , jN). We remark that since jk are
calculated from equations (17) and (18) are divergence free. The estimate is then obtained as
above from theorem 4.3. �

We have shown that the use of a priori knowledge via knot equations and special basis
functions which incorporate the background knowledge leads to better estimates for inversion
than the general Biot–Savart equation. Moreover, the estimate of the singular values provides
a strong spectral analysis of the situation, which can be used in more detail. Here, we will
next provide a numerical study of the situation which confirms the above estimates and also
demonstrates the actual size of the constants for some important sample settings frequently
used for the practical application of magnetic tomography.

5. Evaluation of stability constants for a realistic setup

We use a 7 × 7 × 2 grid to simulate a single-cell device as presented in figure 4. 296
measurement points are placed equidistantly in distance of 60 mm around the wire grid.

In the following we will present a numerical spectral analysis done for this important
sample setting. Figure 5 shows the singular values of the matrices W, WN and Hs that were
presented in section 3 for this setting. In this example the magnitude of the smallest singular

13
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Figure 5. Comparison of the singular values of W, WN and Hs . The measurement points are
placed in a distance of 60 mm around the resistor network. We illustrate equation (49) with
j = A, B, C corresponding to the presented methods.

Table 1. Average reconstruction errors for different distances of the measurement points with
constant relative right-hand side error of 5%. For each reconstruction we used the best possible
choice of the regularization parameter α, which has been calculated using the full knowledge of
the true solution to the problem.

Method 60 mm 45 mm 30 mm 15 mm

Plain Tikhonov regularization 17.07% 13.47% 12.23% 7.07%
Divergence free Tikhonov regularization 15.76% 12.81% 12.04% 6.36%
Special basis reconstruction method 9.75% 7.81% 6.65% 5.53%

values differ by a factor between 10 and 100 as well between algorithms (A) and (B) as
between algorithms (B) and (C). Figure 6 shows a comparison of the reciprocal of the singular
values of each matrix and the singular values of the corresponding Tikhonov matrix.

We expect that the ill-posedness of the problem decreases when the observation distance is
reduced. We present a short overview in which manner this happens by showing reconstruction
errors for different observation distances and a comparison of the singular values, where the
distance between the measurement surface and the measured object is reduced to 30 mm.
The size of the singular values differs by a factor of 100 uniformly over all three methods
by halfening the distance between the measurement surface and the measured object. The
behaviour of the reciprocal of the singular values compared to the singular values of the
Tikhonov matrix is illustrated in figure 7. Table 1 shows reconstruction errors for the sample
setting mentioned above for the measurement points placed in a distance of 60 mm, 45 mm,
30 mm and 15 mm of the measured object. The calculated magnetic field is disturbed by a
uniformly distributed relative error of 5% in the data in the discrete L2 norm ‖ · ‖2.
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Figure 6. Reciprocal of the singular values of the original matrix and the singular values of the
Tikhonov operator with distance of 60 mm between measurement points and resistor network.
1 SMF = spectral multiplication factor.

Next we present some reconstructions comparing the three methods (A)–(C). For
generating sample currents we lowered the conductivity in the z-direction at two wires in
the interior. The resulting current distribution and the magnetic field are calculated according
to section 2. Figure 8 (top left) visualizes this current distribution. The simulated magnetic
field is disturbed by a uniformly distributed random error vector with maximum 7% of
the maximal magnetic field strength. For this error size the average current density is
125 mA cm−2 which corresponds to the DMFC (direct methanol fuel cell) application, but the
range in figure 8 is cut at 40 mA cm−2 to make artefacts visible.

One can see clearly the improvements resulting from incorporating a priori knowledge
as described and analysed in sections 3 and 5. The plain Tikhonov regularization (method
(A)) identifies the spots with lowered current density correctly, but generates strong artefact
in the neighbourhood of the real spots. The divergence free Tikhonov regularization
(method (B)) also identifies regions with lowered current density, but the two distinctly
separated wires appear as one area with lower current density. There are also some artefacts
surrounding the identified spots. As expected from the results of section 5 the special basis
projection method (method (C)) provides the best reconstruction results. One can see two
clearly separated spots and a reduction of the artefacts.
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Figure 7. Reciprocal of the singular values of the original matrix and the singular values of the
Tikhonov operator with distance of 30 mm between measurement points and resistor network.
1 SMF = spectral multiplication factor.

6. Summary and outlook

We have shown that incorporating some a priori knowledge about the current density leads to
significantly better reconstruction results. In detail, we presented and compared three different
reconstruction schemes and derived estimates for the singular values of the corresponding
operators. The special basis projection technique, where most a priori knowledge is
incorporated, shows the best reconstruction results. We provide explicit estimates and values
for a practically relevant setting.

Our estimates and simulations will stimulate future research and development:

(i) Reducing the distance of the measurement surface to the measured object reduces the
ill-posedness of the underlying problem, so in the practical application of magnetic
tomography for fuel cells new sensors (or sensor heads) have to be developed to allow
measurements close to the fuel cell.

(ii) We have presented a qualitative estimate for the singular values, what tools can be
developed to derive quantitative estimates?

(iii) It remains as an open question how errors in the a priori knowledge influence the
reconstructions.
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Figure 8. From top left to bottom right: initial current distribution, reconstructions via plain
Tikhonov regularization (method A), divergence free Tikhonov regularization (method (B)) and
special basis projection method (method (C)). For each reconstruction we used the best possible
choice of the regularization parameter α, which has been calculated using the full knowledge of
the true solution to the problem.

(iv) Which other techniques exist to incorporate a priori knowledge and how do these
prospective methods compare to methods (A), (B) and (C).
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