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Abstract
The goal of this paper is to provide a basis for the analysis of the limits of
the reconstructability of current densities from their magnetic fields as used
for nondestructive testing and monitoring of fuel cells. For the reconstruction
of a current density from its magnetic field, we study the properties of the
Biot-Savart operator W . In particular, the null-space N(W) of the Biot–Savart
operator and its orthogonal space N(W)⊥ with respect to the L2 scalar product
are characterized. The characterization of these spaces is a basic step for the
evaluation of the principle limits of magnetic tomography for fuel cells and
for the development of efficient reconstruction algorithms. Further, practically
realizable examples for elements in the nullspace N(W) are provided. Finally,
for a discrete wire network we show uniqueness for current reconstructions,
i.e. the result N(W) = {0}.
(Some figures in this article are in colour only in the electronic version)

1. Introduction

Magnetic tomography is concerned with the reconstruction of currents or current densities
from their magnetic fields. The magnetic field H of a current density distribution j in some
domain B is described by the Biot–Savart law

H(x) = curl
∫

B

�(x, y)j (y) ds(y), x ∈ R
3 (1.1)

with

�(x, y) := 1

4π

1

|x − y| , x �= y ∈ R
3. (1.2)
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Figure 1. Fuel cell with magnetic measurement device (left) and measurement set-up for
MagneTom measurement and reconstruction software (right). With friendly permission of the
Research Centre Jülich, Germany, and the TomoScience GbR, Wolfsburg, Germany.

With measurements Hmeas of H on some outer surface � ⊂ R
3 \B the reconstruction of j

needs to solve the integral equation

Wj = Hmeas on �, (1.3)

with the Biot–Savart integral operator

(Wj)(x) = curl
∫

B

�(x, y)j (y) ds(y), x ∈ R
3. (1.4)

Here, we focus on the fuel cell application, i.e. the reconstruction on current densities in a
fuel cell from measurements of the magnetic field in the exterior of the cell. Usually fuel
cells consist of rectangular areas of different layers with end plates of cuboid form. The outer
measurement surface � can be chosen by the measurement device. It is usually well separated
from the cell area B. Thus, we assume that the domain B where currents flow is a bounded
domain with Lipschitz continuous boundary and that the surface � is sufficiently smooth. We
will assume that the measurements of H on � or particular components of H on � uniquely
determine H in the exterior of B.

The constructability of j from Hmeas has already been studied by Kress, Kühn and Potthast
in [4]. In this work the nullspace of the operator W has been shown to contain the set

M := {
j = �m: m ∈ C2

0(B)
}
. (1.5)

Further, it is well known that the classical Tikhonov regularization

j (α) := (αI + W ∗W)−1W ∗Hmeas (1.6)

for the approximate reconstruction of j from Hmeas in the limit α → 0 for exact data
reconstructs a projection jp = P(j) of the original current density j onto the space N(W)⊥

perpendicular to the nullspace N(W) of W . Without further á priori knowledge magnetic
tomography can at most reconstruct the reconstruction jp onto the perpendicular space N(W)⊥.
This establishes a basic limit to the error bounds for magnetic tomography. Kress et al showed
by numerical experiments that the density jp still contains important features of the original
density j . Thus they proved that magnetic tomography is a reasonable approach and that even
with the non-trivial nullspace N(W) magnetic tomography is possible.

The central goal of this paper is to provide a complete characterization of the spaces
N(W) and N(W)⊥ and to illustrate the situation by some generic examples. First, this
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characterization can be used as a basis for more efficient reconstruction schemes which take
into account the special form of N(W)⊥. Second, we can use the space N(W)⊥ to give
precise estimates about the best possible reconstruction of current densities and, thus, provide
a method to both theoretically and numerically evaluate the limits of magnetic tomography.
With knowledge of N(W)⊥ we can calculate the orthogonal projector P : L2(B) → N(W)⊥.
Then, the minimal error for the reconstruction of j from H = Wj is given by

E(j) = ‖j − P(j)‖L2(B). (1.7)

The numerical evaluation of this estimate for fuel cell applications is an important problem
for future work.

In section 2 we collect notation, basic definitions and properties of the Biot–Savart
operator. In section 3 the nullspace N(W) and its orthogonal complement N(W)⊥ are studied
and characterized. In section 4 we provide examples for nullspace and non-nullspace elements
and also prove uniqueness for current reconstructions in the case of a discrete wire network.

2. Properties of the Biot–Savart operator

This section serves to collect basic definitions and properties of the Biot–Savart integral
operator. By 〈·, ·〉 and 〈·, ·〉±1 we denote the scalar products in L2 and H±1 or its vectorial
versions. For a field u ∈ L2(B) the weak divergence is defined as the element div u of H−1(B)

with ∫
B

φ div u dx =
∫

B

u · grad φ dx, ∀ φ ∈ H 1
0 (B). (2.1)

We will work with the spaces

Hdiv(B) := {v ∈ L2(B): div v ∈ L2(B)},
Hdiv=0(B) := {v ∈ Hdiv(B): div v = 0} ,

(2.2)

where for the second space Hdiv=0(B) we employ the L2 scalar product.
For boundary value problems with Lipschitz domains we need to define appropriate trace

operators and collect their properties.

Definition 2.1. For a domain B with Lipschitz continuous boundary and a sufficiently smooth
vector field u the trace operators

γ 0[B]: u �→ u|∂B γν[B]: u �→ ν · u|∂B

can be defined. The operator γν is a bounded linear operator

γν[B]: Hdiv(B) → H− 1
2 (∂B). (2.3)

The operator γ0 can be defined as bounded linear operator

γ0[B]: H 1(B) → H
1
2 (∂B). (2.4)

Proof. A proof can be found in chapter I, section 2, theorem 2.5 of [6] for (2.3) and chapter I,
section 1, theorem 1.5 for (2.4). �

Next, we need some notations and operators from potential theory. First, consider the
single layer potential

(Sφ)(x) :=
∫

∂B

�(x, y)φ(y) ds(y), x ∈ R
3. (2.5)
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We use the same letter if the scalar density φ is replaced by a vector-valued density v. For the
proof of the following result we refer to [2].

Theorem 2.2. The single-layer potential S and its vector-valued version are well-defined
mappings

S : H− 1
2 (∂B) → H 1(R3). (2.6)

Second, we consider the volume potential

(Vj)(x) :=
∫

B

�(x, y)j (y) dy, x ∈ R
3 (2.7)

for a vector field j in B or for a scalar function. Its basic properties are summarized in the
following theorem.

Theorem 2.3. Let B,G be bounded domains in R
3. The volume potential V maps L2(B)

continuously into H 2(G). The function Vj is analytic in Be. Moreover,

�Vj = 0 in Be, (2.8)

�Vj = −j in B, (2.9)

where second equation has to be understood in the L2-sense.

Proof. The proof is carried out in [1], theorems 8.1 and 8.2. �

As further preparation step, we will now show that the divergence of the volume potential
for a divergence free current density j in some domain B can be represented by a single-layer
potential over the boundary ∂B, i.e. it does depend only on the boundary values ν · j of the
current density under consideration.

Lemma 2.4. Let j ∈ Hdiv=0(B) for some Lipschitz continuous domain B ⊂ R
3. Then we

obtain

div(Vj) = −S(ν · j) in R
3, (2.10)

where ν · j is to be understood in the sense of γν[B]j .

Proof. For a vector field j ∈ Hdiv=0(B) we have

div(�j) = (grad �) · j. (2.11)

Now, using grad x�(x, y) = −grad y�(x, y) and Gauss’ integral theorem we calculate

div(Vj)(x) =
∫

B

div x(�(x, y)j (y)) dy =
∫

B

grad x�(x, y) · j (y) dy

= −
∫

B

grad y�(x, y) · j (y) dy = −
∫

B

div y(�(x, y)j (y)) dy

= −
∫

∂B

�(x, y)(ν · j (y)) dy = −(S(ν · j))(x), x ∈ R
3

and the proof is complete. �

The operator W is the curl of the operator V

Wj = curl(Vj). (2.12)

This leads to the following result.
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Corollary 2.5. Let B,G be bounded domains in R
3. The operator W defined by (1.4) maps

L2(B) boundedly into H 1(G).

As shown in lemma 2.4, for currents in some bounded domain B it is important to take
into account the normal components ν · j , i.e. the currents which flow into or out of the area
under consideration. To this end we introduce

(S�j)(x) := grad S(ν · j)(x) = grad
∫

∂B

�(x, y)(ν · j)(y) ds(y). (2.13)

The following result is a further preparation to study the nullspace of magnetic fields of current
distributions.

Lemma 2.6. For the Biot–Savart operator W with density j ∈ Hdiv=0(B) we have

div Wj = 0, curl Wj = j − S�j in B (2.14)

div Wj = 0, curl Wj = −S�j in Be. (2.15)

Proof. The statements for the divergence div Wj are obtained for the curl field Wj = curl Vj

by

div curl = 0. (2.16)

The statements for curl Wj can be derived analogously to the proof of equation (2.14) from
[4], lemma 8 as follows. We consider current densities j ∈ Hdiv=0(B). Using

curl curl = −� + grad div (2.17)

for the volume potential Vj and div Vj = −S(ν · j) from theorem 2.4 we obtain

curl Wj = curl curl Vj

= −�Vj + grad div Vj

= −�Vj − grad S(ν · j) (2.18)

in R
3. In the domain B we can use �Vj = −j to derive

curl Wj = j − grad S(ν · j)

= j − S�j. (2.19)

This yields the second statement of (2.14) for a density in Hdiv=0(B). Using the equation (2.18)
in the domain Be with the help of div Vj = 0 we calculate

curl Wj = −grad S(ν · j)

= −S�j, (2.20)

for j ∈ Hdiv=0(B). �

Maxwell’s equations demand the relation

curl H = j (2.21)

between the magnetic field H and the current j . Thus, the physical magnetic field for a current
distribution j in B is given by H = Wj if and only if ν · j = 0 on ∂B, i.e. if we have a closed
system.
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3. The nullspace and its orthogonal complement

As discussed in the introduction, a basic problem for reconstructing current distributions is
the non-trivial nullspace of the mapping W . We define N(W) to be the space of functions
j ∈ Hdiv=0(B) such that Wj = 0 on �. By the assumptions on � this is equivalent to the
equation Wj = 0 in Be. In particular, by an application of the trace operator we obtain

(Wj)(y) = 0, y ∈ ∂B. (3.1)

In order to characterize the nullspace of W we start to derive some properties of its
elements.

For the following lemma please note that for non-vanishing currents in the fuel-cell
application the normal component ν · j of the current density j does not vanish on the
boundary ∂B of the fuel cell. It is a consequence of this lemma that any such current through
a fuel cell will generate some magnetic field outside. There might be different currents which
have the same magnetic field, but in this case their normal components on the boundary will
coincide.

Lemma 3.1. Let j0 ∈ N(W), then we have ν · j0 = 0 on ∂B. In particular, for j0 ∈ N(W)

we have

S�j0 = 0 in Be, curl (Wj0) = j0 in B. (3.2)

Proof. Consider a function j0 ∈ N(W), i.e. we have Wj0 = 0 in Be and also curl(Wj0) = 0
in Be. Using (2.15) we calculate

−grad S(ν · j0) = −S�j0 = curl Wj0 = 0 in Be.

Therefore S(ν · j0) must be constant in Be and from the behaviour of the single-layer potential
at infinity we conclude S(ν · j0) = 0 in Be. The single-layer potential is continuous on ∂B.
Thus, S(ν ·j0) is a harmonic function in B with homogeneous Dirichlet boundary condition and
has to be zero. From the jump relation for the normal derivative of the single-layer potential
(compare [2]) we get ν · j0 = 0 on ∂B. Inserting this into (2.14) we get (3.2). This ends the
proof. �

As a further preparation we prove the following result.

Lemma 3.2. For every j0 ∈ N(W) the magnetic field H defined by H := Wj0 satisfies
H ∈ H 1

0 (B) with div H = 0 and curl H = j0 in B.

Proof. First, we note for Wj0 the traces γ0[B]Wj0 and γ0[Be]Wj0 are identical on ∂B. This
can be obtained by the following argument. The function w := Wj0 is in H 1(G) for some
domain G such that B ⊂ G with smooth boundary ∂G. Then, w|B is in H 1(B) and w|G\B is

in H 1(G\B). For functions ϕ ∈ C1(G) the traces γ0[B]ϕ and γ0[G\B]ϕ are identical on ∂B.
Since the trace operators are continuous

γ0[B]: H 1(B) → H 1/2(∂B)

γ0[G\B]: H 1(G\B) → H 1/2(∂(G\B))
(3.3)

their restriction to ∂B is identical on a dense set, this restriction also coincides on H 1(G).
Now, the assumption Wj0 = 0 in Be yields Wj0 ∈ H 1

0 (B).
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Further, by equation (2.14) we have div H = 0 in B and with the help of lemma 3.1 we
calculate

curl H = curl Wj0 = j0 − ∇S(ν · j0︸ ︷︷ ︸
=0

) = j0, (3.4)

which completes the proof. �

Our first main result now characterizes the nullspace of W . We use the notation

X := {
curl v: v ∈ H 1

0 (B), div v = 0
}
. (3.5)

Theorem 3.3. The nullspace of W : Hdiv=0(B) → L2(�) is given by X, i.e.

N(W) = X. (3.6)

Proof. The inclusion N(W) ⊂ X is a consequence of lemma 3.2, since j0 is the curl of its
magnetic field H which does satisfy the boundary condition γ0[B]H = 0 and is divergence
free.

We need to verify N(W) ⊃ X, i.e. that for an element j ∈ X we have Wj = 0 on �.
Consider a vector field v ∈ H 1

0 (B) with div v = 0 in B. We will need the formula

curl(�(x, y)v(y)) = ∇�(x, y) × v(y) + �(x, y) curl v(y), (3.7)

which is true for both differentiations with respect to x and y. By Stokes theorem we obtain∫
B

curly(�(x, y)v(y)) dy =
∫

∂B

�(x, y) ν × v(y)︸ ︷︷ ︸
=0 on ∂B

ds(y) = 0. (3.8)

Now we calculate

W(curl v)(x) = curl
∫

B

�(x, y) curl v(y) dy

(3.7)= curl
∫

B

curly(�(x, y)v(y)) dy − curl
∫

B

(∇y�(x, y)) × v(y) dy (3.9)

which by an application of (3.8) and ∇x�(x, y) = −∇y�(x, y) can be transformed into

W(curl v)(x) = curl
∫

B

(∇x�(x, y)) × v(y) dy

= curl
∫

B

curlx(�(x, y)v(y)) dy

= curl curl
∫

B

�(x, y)v(y) dy (3.10)

for x ∈ Be. For the last step we will use the formula

div(�(x, y)v(y)) = ∇�(x, y) · v(y) + �(x, y) div v(y)︸ ︷︷ ︸
=0

(3.11)

for both differentiations with respect to x and y and an application of Gauss’ theorem which
yields ∫

B

divy(�(x, y)v(y)) dy =
∫

∂B

�(x, y) ν · v(y)︸ ︷︷ ︸
=0 on ∂B

ds(y) = 0. (3.12)
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Employing curl curl = −� + grad div and �x�(x, y) = 0 for y ∈ B, x ∈ Be we proceed as
follows:

curl curl
∫

B

�(x, y)v(y) dy = (−� + grad div)

∫
B

�(x, y)v(y) dy

= grad
∫

B

divx(�(x, y)v(y)) dy

(3.11)= grad
∫

B

(∇x�(x, y)) · v(y) dy (3.13)

= −grad
∫

B

(∇y�(x, y)) · v(y) dy

(3.11)= −grad
∫

B

divy(�(x, y)v(y)) dy

(3.12)= 0. (3.14)

A combination of (3.9), (3.10) and (3.14) now concludes the proof. �

Our second goal of this section is to characterize the orthogonal complement of N(W)

with respect to the L2-scalar product on B, i.e. we study the space

X⊥ := {j ∈ Hdiv=0(B): 〈j, j0〉L2(B) = 0 ∀j0 ∈ X}.
We start with the study of harmonic vector fields, i.e. fields v which satisfy div v = 0 and
curl v = 0 in B.

Lemma 3.4. Harmonic vector fields are a subset of X⊥, i.e.

{j ∈ L2(B): curl j = 0, div j = 0} ⊂ X⊥. (3.15)

Proof. We need to show that for a field j ∈ L2(B) with curl j = 0 and div j = 0 the equation
〈j, j0〉 = 0 is satisfied for all j0 ∈ X. We employ the formula

div(a × b) = b · curl a − a · curl b (3.16)

equations (3.1), (3.2) and Gauss’ theorem to calculate

〈j, j0〉L2(B) =
∫

B

j (y) · j0(y) dy

(3.2)=
∫

B

j (y) · curl(Wj0)(y) dy

=
∫

B

{j (y) · curl(Wj0)(y) − (Wj0)(y) curl j (y)︸ ︷︷ ︸
=0

} dy

(3.16)=
∫

B

div(Wj0(y) × j) dy

=
∫

∂B

ν · (Wj0(y) × j) ds(y)

(3.1)= 0 (3.17)

where we used the equation curl Wj0 = j0 for j0 ∈ N(W) from (3.2). �

As a preparation for the final step of this section we need to study the orthogonal space
of H 1

0 (B) ∩ Hdiv=0(B).
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Lemma 3.5. If f ∈ H−1(B) satisfies∫
B

f · v dx = 0 v ∈ H 1
0 (B) ∩ Hdiv=0(B), (3.18)

then there exists q ∈ L2(B) such that

f = grad q. (3.19)

Proof. For a proof we refer to [6], lemma 2.1. �

We are now prepared to prove our second main result. To this end we define

Y := {j ∈ Hdiv=0(B): ∃q ∈ L2(B) s.th. curl j = grad q}, (3.20)

where the equation curl j = grad q holds in H−1(B) in the sense∫
B

j · curl v dx =
∫

B

q div v dx ∀ v ∈ H 1
0 (B). (3.21)

Theorem 3.6. The orthogonal space N(W)⊥ is given by

N(W)⊥ = Y. (3.22)

Proof. First, we show the inclusion Y ⊂ N(W)⊥. Consider elements j ∈ Y and j0 ∈ N(W).
We need to show that 〈j, j0〉L2(B) = 0. By definition of Y there is q ∈ L2(B) such that (3.21)
is satisfied. In particular, it is satisfied for v := Wj0 ∈ H 1

0 (B). Now, we calculate

〈j, j0〉L2(B) =
∫

B

j (y) · j0(y) dy

lemma 3.2=
∫

B

j (y) · curl(Wj0)(y) dy

(3.21)=
∫

B

q(y) div(Wj0)(y) dy

(2.15)= 0, (3.23)

which proves the first part of the statement.
Second, we show that the inclusion N(W)⊥ ⊂ Y is satisfied. For j ∈ N(W)⊥ we need

to show that j ∈ Y . Consider an element v ∈ H 1
0 (B) ∩ Hdiv=0(B). Then curl v is an element

of X = N(W). Now, Gauss’ theorem in combination with (3.16) yields∫
B

v · curl j dx =
∫

B

j · curl v dx = 0. (3.24)

Finally, an application of lemma 3.5 to f := curl j yields the existence of q ∈ L2(B) such
that curl j = grad q, i.e. j ∈ Y and the proof is complete. �

Theorems 3.3 and 3.6 yield a decomposition of the space Hdiv=0(B) as follows.

Corollary 3.7. We have the orthogonal decomposition

Hdiv=0(B) = N(W) ⊕ N(W)⊥ = X ⊕ Y. (3.25)

4. The nullspace N (W ) of W by example and uniqueness for discrete wire networks

First, the goal of this final section is to provide examples for elements in N(W) and an
example for elements which are not in N(W). Second, we will prove uniqueness for current
reconstructions in the case of discrete wire networks. We start with the non-nullspace example.
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Figure 2. Example for two particular distributions of the conductivity which leads to currents
around the black lines.

4.1. Non-nullspace example

We would like to show that not all divergence-free fields j ∈ Hdiv=0(B) with ν · j = 0
generate a vanishing magnetic field H = Wj outside of B. Let B be a cuboid in R

3 and

j : [0, 1] → B, j = 1, 2 as indicated by the black lines in figure 2. We assume that a
sufficiently smooth conductivity distribution σ(x) is equal to σ1 in a neighbourhood

V (h, j) := {x: d(x, γj ) < h} (4.1)

of size h > 0 of the wires 
1 or 
2, respectively, and equal to σ0 outside of V (2h, j), j = 1, 2.
Consider a constant current injection flowing from the centre of the bottom square to the
centre of the top square for both settings. The difference of the two settings yields a current
distribution j depending on σ0, σ1 and h which satisfies

div j = 0 in B, ν · j = 0 on ∂B. (4.2)

For h → 0, σ0 → 0 and constant σ1 the currents j tend to a simple quadratic wire loop which
does generate a non-vanishing magnetic field outside of B, i.e. for sufficiently small h and
sufficiently small σ0 the element j with ν · j = 0 on ∂B is not in the nullspace N(W) of the
operator W .

4.2. Nullspace example

As a second example we would like to construct particular elements of the nullspace N(W)

of W and study their properties. Consider a closed current loop defined by


(t) := r0 ·

cos(t)

sin(t)

0


 − r1 cos(a ∗ t) · ∗


cos(t)

sin(t)

0


 + r1 sin(a ∗ t) ·


 0

0
−1


 (4.3)

with the two radii r0 and r1 such that r1 < r0. An example with r0 = 5 and r1 = 2 is illustrated
in figure 3. The current I in the wire is chosen proportional to 1/a when the number of turns
a is increased. Then the surface current density for the torus is converging towards a constant
surface current density.
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Figure 3. Current loop which in the limit for infinite number of turns and constant current density
on the boundary of the torus is an element of the nullspace N(W). The right image shows the norm
of the simulated magnetic field on the line from (−10, 0, 1) to (10, 0, 1) which crosses the torus
twice for the x-coordinate approximately between −7 and −3 and 3 and 7. For the left image we
used 2000 sampling points and 50 turns, the right image is calculated with 10 000 sampling points
and a = 200 turns.

The loop is the discretized version of a nullspace element j0 which is the curl of a vector
field v flowing in a homogeneous way through the torus. The curl v of v is zero inside of
the torus and outside of the torus. On the boundary only the derivative in the direction of the
normal is nonzero. For a boundary point x of the torus we choose a coordinate system where
ν(x) coincides with the negative x-axis such that the direction of the flow v in x is the unit
vector e3 = (0, 0, 1)T . Then, we obtain

j (x) = curl v(x) = curl


 0

0
v3(x)


 =


 0

−∂xv3(x)

0


 =


 0

−δ(x)v3(x)

0


 (4.4)

with the size v3(x) of the jump of v at x. If the loop is placed in the interior of the domain B,
then it satisfies div v = 0 and the boundary condition γ0[B]v = 0, i.e. j = curl v is an element
of X = N(W).

4.3. Different fuel cell currents with the same magnetic field

Sometimes directional constraints of the form

e3 · j (y) � 0 ∀ y ∈ B (4.5)

with e3 := (0, 0, 1)T , which come from the particular design and chemistry of fuel cells, are
introduced as additional ‘boundary conditions’. However, this does solve the problem with
the nullspace elements only partly.

Of course, j0 does not satisfy directional constraints. Further, we know from [4] that
elements of the nullspace, which satisfy directional constraints, must be zero. Thus, any
element of N(W) will not satisfy estimate (4.5).

However, consider any homogeneous current density jhom flowing through a domain B in
the z-direction, i.e. it satisfies the directional constraint (4.5). Then, we might construct

jβ := jhom + βj0 (4.6)
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with some parameter β ∈ R. For all sufficiently small β the current density jβ also satisfies
the directional constraints (4.5). Further, we calculate

Wjβ = Wjhom + β Wj0︸︷︷︸
=0

= Wjhom, (4.7)

i.e. all current densities jβ produce the same magnetic field outside the domain B. Thus, it is not
possible to decide from the measurement of the exterior magnetic field H which admissible
current density jβ has generated the measurements. The problem arises both for fuel cell
stacks and for single cells.

The introduction of an upper limit for the current density is another possible constraint
which leads to a natural method of stabilization of the problem. However, it does not influence
the nullspace question.

In practical experiments with fuel cells [3] the above nullspace element (i.e. a hot spot
at the centre surrounded by a ring of low current density) has not been observed yet. Why is
this the case? The answer is the high degree of discretization which is currently used in the
numerical simulation of experiments. In a cell with a discretization of 6 × 6 × 3 the nullspace
element cannot be realized. As our final result we will show that discrete wire models will
always lead to uniqueness for current reconstructions.

4.4. Uniqueness for discrete wire networks

Finally, we show that for wire grids the nullspace is trivial, i.e. we have uniqueness for the
current reconstruction.

Consider a wire network N, which we consider to be a collection of discrete straight wires
l = y1y2 from y1 to y2 with different conductivity σ which are connected only at their end
points y1 or y2, respectively. Currents may flow through the wires from some point x1 to some
other point x2. For difference reconstructions we assume that the wire network is a closed
system. We note that the currents j through a wire network are not an element of L2(B) and
that the theory of the first sections does not apply to this situation.

As a preparation we calculate the magnetic field H of some current flowing through the
line l0 from y1 = (−a, 0, 0)T to y2 = (a, 0, 0)T , a > 0 in the point x = (0, 0, h)T . We obtain

j (y) =

jx(y)

0
0


 , |x − y| =

√
y2 + h2, (x − y) × j (y) =


 0

hjx(y)

0


 , (4.8)

where jx denotes the x-component of the current, and thus

H(x) = −1

4π

∫
l0

x − y

|x − y|3 × j (y) dl(y)

= −hjx

4π

∫ a

−a

1

(y2 + h2)
3
2

dy ·

0

1
0




= −hjx

4π

2a

h2
√

a2 + h2
·

0

1
0




= jx

2πh

a√
a2 + h2

·

 0

−1
0


 . (4.9)
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For h → 0 the magnetic field has a singularity of order 1/h. Now, we obtain the following
uniqueness result.

Theorem 4.1. Let j be a current flowing through our wire network which is located in a
domain B such that no current is flowing through the boundaries of B, i.e. ν · j = 0 on ∂B.
We assume that there are no sources or sinks inside the network, i.e. the current j satisfies
div j = 0. If the magnetic field H generated by the current j vanishes in the exterior Be of B,
then we obtain j = 0 in N.

Proof. The magnetic field is an analytic function in the exterior of N. By assumption it
is zero in Be, thus it is zero in Ne. In particular, it is zero in a neighbourhood of each
discrete wire l. However, any current flowing through l would generate a singularity of H at
l, compare equation (4.9), where the calculation is carried out for a particular choice of the
coordinate system. Thus, the current must vanish in l and by the same argument in each part l
of the whole network N. This ends the proof. �

5. Conclusions

We have characterized the nullspace of the Biot–Savart operator in theorems 3.3 and 3.6. This
is an important step for the understanding of the magnetic tomography problem and a basis
for the development of efficient algorithms for current reconstructions which take into account
the particular form of the orthogonal complement N(W)⊥ of the nullspace N(W).

Further, a particular element of the nullspace has been constructed and the behaviour of
the magnetic field has been numerically verified for a discretization of this element. Finally,
we have shown that the magnetic tomography problem for discrete wire networks is always
uniquely solvable.
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(1) Author: Please update reference [3].
(2) Author: Please be aware that the colour figures in this article will only appear in colour

in the Web version. If you require colour in the printed journal and have not previously
arranged it, please contact the Production Editor now.


